Factoring Certain Infinite Abelian Groups by Distorted Cyclic Subsets
نویسنده
چکیده
We will prove that two results on factoring finite abelian groups into a product of subsets, related to Hajós’s and Rédei’s theorems, can be extended for certain infinite torsion abelian groups. Mathematics Subject Classification (2000): Primary 20K01; Secondary
منابع مشابه
The Possibility of Extending Factorization Results to Infinite Abelian Groups
We shall consider three results on factoring finite abelian groups by subsets. These are the Hajós’, Rédei’s and simulation theorems. As L. Fuchs has done in the case of Hajós’ theorem we shall obtain families of infinite abelian groups to which these results cannot be extended. We shall then describe classes of infinite abelian groups for which the extension does hold. MSC 2000: 20K99 (primary...
متن کاملAddendum to: "Infinite-dimensional versions of the primary, cyclic and Jordan decompositions", by M. Radjabalipour
In his paper mentioned in the title, which appears in the same issue of this journal, Mehdi Radjabalipour derives the cyclic decomposition of an algebraic linear transformation. A more general structure theory for linear transformations appears in Irving Kaplansky's lovely 1954 book on infinite abelian groups. We present a translation of Kaplansky's results for abelian groups into the terminolo...
متن کاملMonochrome Symmetric Subsets in 2-Colorings of Groups
A subset A of a group G is called symmetric with respect to the element g ∈ G if A = gA−1g. It is proved that in any 2-coloring, every infinite group G contains monochrome symmetric subsets of arbitrarily large cardinality < |G|. A topological space is called resolvable if it can be partitioned into two dense subsets [8]. In [4] W. Comfort and J. van Mill proved that each nondiscrete topologica...
متن کاملTriple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملA Polynomial Time Algorithm For The Conjugacy Decision and Search Problems in Free Abelian-by-Infinite Cyclic Groups
In this paper we introduce a polynomial time algorithm that solves both the conjugacy decision and search problems in free abelian-by-infinite cyclic groups where the input is elements in normal form. We do this by adapting the work of Bogopolski, Martino, Maslakova, and Ventura in [1] and Bogopolski, Martino, and Ventura in [2], to free abelian-by-infinite cyclic groups, and in certain cases a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009